
CertCoalesce
Butterfly Key Expansion to 

Manage NDN Certificate Pools

Proyash Podder, Xinyu Ma, Alex Afanasyev

11th NDN Hackathon Hack Presentation
May 23, 2021



CertCoalesce Highlights

“Lays eggs”

(1)

Generate 
Butterfly key

(private + 
public key)

Device operations

Hatch eggs Pupate 
caterpillars

(2)

Expand 
Butterfly public 
key into a set 

for signing

(public key set)

D
ef

in
e 

/ a
gr

ee
 o

n 
se

t 
si

ze
 a

nd
 d

ef
in

iti
on

(3)

Specialize and 
sign public keys 

in the set

(cert set)

(4)

Specialize and 
expand private 

keys

(private key set)

Certificate issuer operations



Design Properties

1. One butterfly key pair can generate specified (technically large number) cocoon certs that can 

be valid simultaneously

2. Set of private keys (and assumed set of certificates) can be used after confirmation (need a 

“kaleidoscope ID” to “pupate” caterpillars) of the signed set from the issuer 

a. In the future, this design feature may be adjusted
3. Set size (and actual timing for cert generation) is agreed upon between requester and issuer

a. Right now, it is explicitly requested by the requester and set of certs is immediately generated by the 
issuer

b. In the future, we could use a convention with scheduled cert generation by the issuer
4. Hatching (of a public key) and pupation (of a private) based on 64-bit identifier

a. Identifier can be mapped to a time period
b. Or hashed from a name (e.g., to request certs for nodes in hierarchy)

“Lays eggs”
Hatch eggs Pupate 

caterpillars



Design Details 

Device Cert Issuer

1.Generate 
private 

Butterfly

2.Derive 
public 

Butterfly

{i1,...,in}

3.Generate 
Kaleidoscope

4.Encrypt 
Kaleidoscope

6.Decrypt 
Kaleidoscope

{i1,...,in}

7.Derive
Cocoon 

private keys

5.Derive 
Cocoon

certificates

Send

Cocoon
private key

1

Cocoon
private key

n

Cocoon
certificate

1

Cocoon
certificate

n

Public 
butterfly

i set

kaleidosc
ope

“Lays eggs”
Hatch eggs Pupate 

caterpillars



Matching to NDN Key/Certificates
● Butterfly (private/public) key (“seed”) is more than just a regular key

○ ECC signing key + ECC encryption key + AES expansion function
○ <identity>/KEY/butterfly-<key-id>

■ /coalesce/KEY/demo-1
● Egg (public) keys are regular ECC public keys

○ Don’t really need to be stored independently, but have their names expanded from butterfly key + ID inside the pool
○ <identity>/KEY/<key-id>-<ID-in-the-Pool>

■ /coalesce/KEY/demo-1-1, ..., /coalesce/KEY/demo-1-5
● Caterpillar certs are regular NDN certificate

○ Payload: regular ECC public key + any relevant signing info (validity period, info, etc.) 
○ <identity>/KEY/<key-id>-<ID-in-the-Pool>/Coalesce/_version=<XX>

■ /coalesce/KEY/demo-1-1/coalesce/v=..., …, /coalesce/KEY/demo-1-5/coalesce/v=...
● Cocoon private keys are also regular ECC private key

○ Can be directly stored and used in NDN Keychain
○ <identity>/KEY/<key-id>-<ID-in-the-Pool> (same as egg key names)

■ /coalesce/KEY/demo-1-1, ..., /coalesce/KEY/demo-1-5



Hackathon Accomplishments
● (beyond original plan ✅) CertCoalesce design refinements

○ Initial sketch revealed issues, as a result design got changed (simplified)
○ Also, we renamed elements to closely match butterfly lifecycle

● (planned ✅) A working prototype of CertCoalesce crypto operations

○ Generating butterfly keys, laying and hatching eggs, pupating caterpillars 
○ Generation of actual NDN certificates and private keys (ECC) to be directly used for signing and 

verification
● (planned ✅) Basic demo for CertCoalesce operations 

○ Stay tuned, coming next
● (planned 🟨) Documentation

○ Refined algorithm description and created process diagram
○ But no interactive / expanded documentation

● (semi planned 🟨) Full integration with NDN

○ So far, only in-memory store of butterfly key (undefined encoding formats)



Future Work
● Determine format and implement encoding/decoding for butterfly key (public+private) 

storage

● Explore conventions for CertCoalesce pool identifiers

○ Time period and namespace based
● Explore key name expansion functions

● Evaluate uses of kaleidoscope ID

○ Generated by the issuer (now), supplied by the requester, hybrid
● Integrate with NDNCERT

● Expand documentation
○ Make it more comprehensive and interactive (if possible)



DEMO


